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As is well kno~ [i], when electromagnetic waves propagate in plasma, self-focusing can 
arise as a result of the redistribution of plasma density under the action of the field. 
Such redistribution is possible both as a result of plasma heating as well as a result of 
electrostriction pressure. There are situations when the striction mechanism dominates. 
This occurs primarily for self-focusing in solids, where absorption of light is small~ But, 
even in media with large absorption of light, the thermal pressure can exceed the striction 
pressure only for pulses with sufficiently long duration (exceeding 10-3-10 -6 sec [2-4]). 

The system of equations describing the striction self-focusing, assuming that the per- 
turbation of the density of the medium d0 is small, is examined in [5]. It is shown that a 
collapse, i.e., unbounded increase in the field amplitude E and density perturbation as the 
instant of collapse to is approached, can occur in such a system and, in addition, the 
following relations are satisfied approximately: 

E N ( t o - - t )  -~, 6p ~ ( t o - - t )  -~. (1) 

Obviously, such an approach is valid as long as the nonlinearity remains small. It is 
clear that the decrease in density d0 cannot exceed the unperturbed density po. 

The present work examines the striction self-focusing without assuming the smallness of 
dp and the flow speed of the medium. 

The system of equations that describe the striction self-focusing has the form [i] 

o9 t o o t o rpv2= _ v p  _Jc_ F, 
7-K + - 7 "  -s rpv = O, ~ pv ~ r Or 

2ik[OE ,_ i oE~ k 2as E O, 
Oz --  ~ -5T] + A,E + % = (2) 

where p, v, ~, and p are the density, velocity, dielectric permeability, and pressure of the 
medium, respectively. 

For an isotropic plasma 

2 

8 = i ~P ~ = e2n . ~ ,  - -  ~ m ~  V [ E 12, p = n M .  

It is assumed here that the electron distribution is in equilibrium with the potential 
created by the striction pressure of the field, while the quantities ~ and p correspond to 
the ionic component of the plasma. 

The first two equations in this system do not take into account motion along the axis 
of the pulse, which is small in comparison with the radial motion. 

In what follows, we will examine striction self-focusing in an isotropic plasma, assum- 
ing that Te>>Ti, and P = nT e. 

We will seek a solution to the system near the beam axis in the form [6] 
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E = A ( t ' ) e i V ( z  ', t ' )  exp ( - -~12(z  ', t ')/a2), ] 

P = Po ~ g~(z', t ' ) N ( z ' )  exp ( - - r ~ ( s  t ')/b*), (3)  

v = Vo~(Z', t ' )r ,  

w h e r e  z '  = z ;  t '  = t -- Z /Vgr ;  A ( t ' )  d e t e r m i n e s  t h e  s h a p e  o f  t h e  p u l s e ;  and 
t y  p e r t u r b a t i o n .  

Since only z' and t' will be used below, in order to simplify the notation, we will 
omit the primes for these variables. 

Substituting (3) into (2), we obtain for f2>> 1 and g2>> 1 the following equations for 

the functions f and g: 

( | )  4[4 4~e2k2g4N 
k2] "7" zz = 7 -]- mMea 2 .b 2 ' 

g2N is the densi- 

3g" 2 g2N2 Te gaN e2A2] a 

(Oo - g~x)' = M ( p o _  ~,~) b" + 2~M~'. ~" 

Let us examine the case of slow variation of f along z, i.e. when it is possible to ne- 
glect the term k2f(I/f)zz . Then we have the equation 

]4 ~ ~e2a4 g 4N 
mMo~2 b 2 , no = Po/M.  

Let us consider rectangular pulses A = const. The form of the general solution to this 

equation depends on the sign of the quantity 

( (op 14 k~A2a2 
c = noT  ~ - -  I ,"E] 3-5"E-' 

i.e. on the sign of the difference between the thermal pressure and the effective pressure 
of the electromagnetic field. For c < 0, 

g~ = 2 c / (  d - -  (d  ~ - -  4lc)  '/~ sin (yr-----~ t + co)), 

((op]ak2A2a~ ((Oplak~A'a~ 4 
d = ~--E / ~ , l = - - \ - - E /  ~-~ ., r = 3b~N, 

where Co is a constant of integration, i.e. when the striction pressure exceeds the thermal 

pressure, oscillation in the amplitude~can arise. For c > 0, 

g 2  ~ - -  
4~ o~p ( -  V ~ ,  + %) 

~ - I~p ( - V ~  + %) - al ~" (4) 

In the limit ar t + co < I, this expression reduces to the form 

g2 ,~ t l ( l  -- ]/~7 t). 

In the opposite limiting case ~r t + Co > 1 

g2 ~ 4c/{(41c - -  d z) exp ( - - ] /~ '~ t  -~- Co) - -  2d}. 

Thus, during the initial stage, the field amplitude along the axis and the density pertur- 

bation will increase according to the laws 

E ~ i / ( to - -  t) ~/2, ~p ~ i / ( to - -  t) (5) 

with a characteristic growth time to equal in order of magnitude to 
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to ~ l J ] / ~ c .  

As time passes, this increase must slow down and after attaining some maximum must be- 
come blurred. We note that for the strong nonlinearity examined here, the field increases 

in time more slowly than in the case of a weak nonlinearity (cf. (i) and (5)). 

It is natural to expect that the results obtained can be reasonably applied when the 

quantities involved vary sufficiently slowly, i.e., far away from the instant of maximum 
collapse. But, qualitatively, the conclusions must be correct, a fact which is verified by 

the results of numerical simulation. 

For numerical simulation, it is more convenient to transform to dimensionless variables: 

#fl v 0 
7 F  + "7" -g-fr roy = O, 

~ pu • v a o a O 0 (6 )  
o--f ' T ~ roY" = - -  ~ ~ - -  z p  ~ 7  1 g [2  

~ + A a g - - a P g = O ,  2~ 

,~u o T eT o3 ~ ~ E~'F 
__ . mp " Eo, no, ~, a n d  a a r e  t h e  c h a r a c t e r i s t i c  w h e r e  ~ - - = - - "  A t - - ~ ,  ~ =  - ~  7.~.~.. Up__ m e 

a ' co 2 '~ ~ ' (4n)ZMano 

f i e l d  a m p l i t u d e ,  p l a s m a  d e n s i t y ,  d u r a t i o n ,  a n d t r a n s v e r s e  d i m e n s i o n s  o f  t h e  p u l s e ,  r e s p e c t i v e -  

l y .  

I n  t h e  n u m e r i c a l  c a l c u l a t i o n s  p e r f o r m e d ,  t h e  v a r i a b l e s  i n  t h e  s y s t e m  ( 6 )  a r e  m e a s u r e d  
i n  t e r m s  o f  Eo = 2 . 1 0  CGSE u n i t s ,  no  = 5 . 1 0  ~5 cm - 3 ,  x = 10 - 6  s e c ,  a = 0 . 5  cm,  a n d  o@/~ a = 1 / 2 ,  

Figure 1 shows the variation of the maximum values of the field and the density as a 
function of time. The behavior of ~j~ and p,as can be seen, verifies the ideasdeveloped above 
and the initial stage of self-focusing corresponds to the self-similar law (5). 

Figures 2 and 3 show the results of the calculation of the self-focusing of a Gaussian 
pulse 

#,~ (z O, r. t) &% ~,-.~, ( -  �9 ' '" = , = . r < ~ , - - ~ ' , . ~ o ) ,  o ( = , , ' , ' ~ = o )  p p .  

Figure 2 shows the axial profiles of the pulse at characteristic times with the follow- 
ing parameters: p = i0, v = 0.i, ~ = i, ~ = i0, ~o = 0.8, po = 4.0, To = 1.6, and do = 2. 
This value of ~ corresponds to the temperature T e ~ 1 eV, which corresponds to a large 
thermal pressure, i.e., c > O. 

As the results indicate, the front part of the pulse self-focuses most effectively. 
Starting at some time, tbe effectiveness of the self-focusing decreases. In this case, a 
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certain part of the pulse focuses, while the tail end of the pulse may not focus at all. 
This is seen in Fig. 2, wherein the time t = 2.2 corresponds to the passage of the pulse 
maximum through the plasma boundary. 

As follows from (4), the duration of that part of the pulse falling into the self- 
focusing regime is of the order of i/av~c. 

Fig. 3 shows the axial profiles for ~ = 2, ~ = 0.i, ~ = i, o = i0, ~o = 0.8, To = 1.2, 
and ao = 2, which corresponds to the case c < 0. In this case, the profile has an oscilla- 
tory structure. 

It should be noted that in this case self-modulation of the pulse is much weaker in 
comparison with Kerr and thermal self-focusing. For all of the different variations of the 
calculations performed, the numer of oscillations did not exceed 2--3. In spite of the fact 
that for c < 0, the depth of the oscillations in the field amplitude was large, the oscil- 
lations of the density were either very weak or absent entirely. This is seen in Fig. 4, 
wherein the density distribution along the pulse axis is presented for the same parameters 
and at the same times as in Fig. 3. 

Figure 5 shows the typical picture of the evolution of the radial distribution in 
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density and velocity of the plasma for z = i.i. The starting stages correspond to the ap- 
pearance of self-focusing and the formation of a waveguide channel under the action of the 
field. The final stages of this picture, t = 2.9 and t = 3.1, correspond to the free motion 
of the plasma and collapse of the waveguide channel. The parameters in Fig. 5 are the same 
as in Figs. 3 and 4. 
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SINGULAR SELF-SIMILAR SUPEP~ENSE COMPRESSION REGIMES 

FOR LASER TARGETS 

S. I. Anisimov and N. A. Inogamov UDC 532.51+533.95 

The approach to laser-driven fusion reactions proposed in [i, 2] is based on a special 
mode for depositing energy in the laser target that ensures compression of matter to den- 
sities of the order of 103-104 times the initial solid density. The optimum choice of laser 
pulse shape and target parameters on the basis of numerical calculations presents great 
difficulties. The key idea in the calculations is usually the requirement of adiabatic 
compression of the dense core of the target. Dimensional analysis then permits establishing 
the asymptotic law for the increase with time of the mechanical power expended on compression 
[3]: E m ~ It1-2 (here and below, we consider spherical compression of matter with an adi- 
abatic index u = 5/3; time is measured from the instant of collapse). A particular self- 
similar solution, satisfying this law, is indicated in [4, 5]. In this case, the follow- 
ing questions remain unclear: i) Does the self-similar correspond to the only optimum com- 
pression regime and are flows close to self-similar flows realized with the numerical simu- 
lation? 2) How is the laser pulse shape related to the time dependence of the mechanical 
power? In the present work, it is shown that the solution in [4, 5] is not the only solution 
in the sense indicated and two new families of self-similar solutions are constructed to the 
equations of gasdynamics, describing the compression of simple shell-like and continuous uni- 
form laser targets. The solutions constructed are singular; the corresponding values of the 
self-similar indicators lie within some interval of acceptable values. In order to con- 
struct the solutions, it is necessary to transform to a scale-invariant representation of 
the hydrodynamic variables. The reverse procedure for calculating the physical quantities 
requires the characteristic parameters of the medium: the specific entropy in the case of 
shells and the initial plasma density in the case of continuous targets. The solutions 
constructed describe the process of an unbounded concentration of energy as the instant of 
collapse is approached; in an actual experiment, the magnitude of the total energy, of 
course, is limited and determines the maximum degree of compression. It is shown by way of 
comparison with numerical calculations that for a correct choice of parameters the self- 
similar solutions found give a quantitative description of the dynamics of the compression 
of the dense core of a target in regimes that are similar to those studied numerically [i, 
2]. It has been found that for shells with degrees of compression of practical interest, 
the law that describes the change in power can differ noticeably from the asymptotic law. 
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